Gerak Osilasi dan Gerak Jatuh Bebas

Dalam kehidupan sehari-hari, kita sering melihat atau menemui benda yang mengalami gerak jatuh bebas, misalnya gerak buah yang jatuh dari pohon, gerak benda yang dijatuhkan dari ketinggian tertentu atau bahkan gerak manusia yang jatuh dari atap rumah.

Lalu mengapa benda mengalami gerak jatuh bebas?

Apa yang Anda amati ketika melihat benda melakukan gerak jatuh bebas? Misalnya ketika buah mangga yang sangat enak, lezat, manis dan bergizi jatuh dari pohonnya. Jika kita amati secara sepintas, benda yang mengalami gerak jatuh bebas seolah-olah memiliki kecepatan yang tetap atau dengan kata lain benda tersebut tidak mengalami percepatan. Kenyataan, yang terjadi adalah setiap benda yang jatuh bebas mengalami percepatan tetap. Alasan ini menyebabkan gerak jatuh bebas termasuk contoh umum GLBB. Bagaimana membuktikan bahwa benda yang mengalami gerak jatuh bebas mengalami percepatan tetap?

Dahulu kala, Galileo berpendapat semua benda akan bergerak jatuh dengan percepatan konstan yang sama jika tidak ada udara atau hambatan lainnya. Misalnya saja percobaan batu dan bulu yang dijatuhkan dalam tabung berisi udara dan tabung yang hampa udara. Maka pada tabung berisi udara, batu akan sampai lebih dulu di dasar tabung. Sedangkan pada tabung hampa udara, kedua benda tersebut sampai di permukaan tabung pada waktu yang hampir bersamaan.

gjb1

Jadi menurut Galileo semua benda, berat atau ringan, jatuh dengan percepatan yang sama, paling tidak jika tidak ada udara. Jika kita memegang selembar kertas secara horizontal pada satu tangan dan sebuah benda lain yang lebih berat di tangan yang lain, maka benda yang lebih berat akan lebih dulu mencapai tanah (Gambar a diatas). Tetapi jika percobaan tadi diulang dengan membentuk kertas menjadi gumpalan kecil (Gambar b diatas), maka kedua benda tersebut akan mencapai tanah pada saat yang hampir sama. Udara berperan penting sebagai hambatan untuk benda-benda yang sangat ringan yang memiliki permukaan yang luas. Akan tetapi dalam banyak kondisi umumnya hambatan udara ini diabaikan.

Sumbangan Galileo yang khusus terhadap pemahaman kita mengenai gerak benda jatuh, dapat dirangkum sebagai berikut: “Pada suatu lokasi tertentu di Bumi dan dengan tidak adanya hambatan udara, semua benda jatuh dengan percepatan konstan yang sama”.

Aplikasi nyata dari gerak lurus berubah beraturan dengan percepatan a positif (gerak lurus dipercepat dengan percepatan a tetap) ini adalah suatu benda yang dijatuhkan dari ketinggian h meter dengan kecepatan awal nol atau tanpa kecepatan awal. Percepatan yang dialami oleh benda tersebut adalah percepatan gravitasi bumi g (m/s2). Lintasan gerak benda ini berupa garis lurus. Gerak benda semacam ini yang disebut gerak jatuh bebas.

Gerak jatuh bebas adalah gerak lurus berubah beraturan yang memiliki kecepatan awal v nol = 0 dan mengalami percepatan a = g.

Benda jatuh bebas memiliki percepatan yang disebabkan oleh gaya berat dan diberi simbol g, yang besarnya kira-kira 32 ft/s2, atau 9,8 m/s2, atau 980 cm/s2. Sehingga dalam membahas kasus-kasus benda jatuh bebas kita bisa menggunakan persamaan-persamaan GLBB dengan menggunakan nilai g sebagai a. Selain itu karena benda jatuh bebas memiliki kecepatan awal nol, maka variabel v0 dapat diabaikan. Begitu pula dengan istilah x untuk jarak akan diganti dengan h karena gerak jatuh bebas bergerak searah sumbu y.

gjb2

Berikut ini adalah beberapa persamaan GLBB yang telah disesuaikan dengan kasus gerak jatuh bebas :

vt = gt

h = ½ gt2

vt2 = 2gh

dari persamaan diatas diperoleh persamaan untuk gerak jatuh bebas sebagai berikut : t = gjb3

Lalu apa itu gerak osilasi?

Osilasi adalah variasi periodik terhadap waktu dari suatu hasil pengukuran, contohnya pada ayunan bandul. Istilah vibrasi atau getaran sering digunakan sebagai sinonim osilasi, walaupun sebenarnya vibrasi merujuk pada jenis spesifik osilasi, yaitu osilasi mekanis. Osilasi tidak hanya terjadi pada suatu sistem fisik, tapi bisa juga pada sistem biologi dan bahkan dalam masyarakat. Osilasi terbagi menjadi 2 yaitu osilasi harmonis sederhana dan osilasi harmonis kompleks. Dalam osilasi harmonis sederhana terdapat gerak harmonis sederhana. Untuk istilah dalam hasil pengukuran kelistrikan, osilasi dapat disebut flicker atau gangguan yang mengubah bentuk gelombang menjadi rusak/cacat.

Mengkaji lebih jauh dengan meninjau sebuah benda bermassa M (kg) yang terletak di atas bidang tanpa gesekan dan dikaitkan kepada salah satu ujung pegas berkonstanta k (N/m) sebagaimana yang disajikan pada gambar berikut.

index

Gambar 1

Osilasi  pegas

Ketika pegas disimpangkan sejauh x dari kedudukan setimbangnya lalu kemudian dile­pas, maka massa M akan bergerak sedemikian rupa sehingga selalu menuju ke kedudukan semula. Hal ini terjadi karena adanya gaya pemulih sehingga timbul gejala yang kita kenal dengan osilasi.

Dalam keadaan tidak terdapat gaya yang bekerja pada massa M tersebut, maka ia akan tetap dalam keadaan diam di posisi setimbang, x=0. Namun seandainya dibe­ri­kan gaya kepada massa tersebut dengan cara menekan dan melepaskannya, maka massa tersebut akan bergerak periodik menurut frekuensi tertentu. Gejala serupa terulang bahkan jika M ditarik, dipukul, atau diberi perlakuan berbeda, massa terse­but selalu bergerak dalam pola yang sama menuju posisi semula pada keadaan setimbang. Gerakan periodik disekitar titik setimbang inilah yang disebut dengan osilasi. Adapun gaya yang menyebabkan massa selalu bergerak ke kedudukan semula disebut dengan gaya pemulih.

Gerak harmonik pada bandul

bandul

Bandul sederhana terdiri atas benda bermassa m yang diikat dengan seutas tali ringan yang panjangnya l (massa tali diabaikan). Jika bandul berayun, tali akan membentuk sudut sebesar α terhadap arah vertical. Jika sudut α terlalu kecil, gerak bandul tersebut akan memenuhi persamaan gerak harmonic sederhana seperti gerak massa pada pegas.

Kita tinjau gaya-gaya pada massa m. dalam arah vertical, massa m dipengaruhi oleh gaya beratnya yaitu sebesar w = mg. gaya berat tersebut memiliki komponen sumbu x sebesar mg sin α dan komponen sumbu y sebesar mg cos α.

bandul2

Gaya dalam arah sumbu x merupakan gaya pemulih, yaitu gaya yang selalu menuju titik keseimbangan. Arah gaya tersebut berlawanan arah dengan simpangan. Dalam arah sumbu y, komponen gaya berat diimbangi oleh tegangan tali T sehingga gaya dalam arah sumbu y bernilai nol.

Jika sudut α cukup kecil (α < ), maka nilai sinus tersebut mendekati dengan nilai sudutnya, sin α ≈ α. Sehingga hubungan antara panjang busur x dengan sudut teta dinyatakan dengan persamaan : x = L sin α atau α = x/L

(ingat bahwa sudut teta adalah perbandingan antara jarak linear x dengan jari-jari lingkaran (r) jika dinyatakan dalam satuan radian. Karena lintasan pendulum berupa lingkaran maka kita menggunakan pendekatan ini untuk menentukan besar simpangannya. Jari-jari lingkaran pada kasus ini adalah panjang tali L)

Jika massa m menyimpang sejauh x dari titik seimbang, maka massa tersebut akan mengalami gaya pemulih sebesar : F = mg sin α ≈ mg α = x

Gaya pemulih tersebut sebanding dengan simpangan, seperti pada gerak harmonic sederhana. Sekarang kita akan membandingkan gaya pemulih untuk massa pada pegas dan gaya pemulih untuk system bandul sederhana.

Pada pegas berlaku F = kx, sedangkan pada bandul berlaku F = x. harga pada bandul adalah tetap sehingga dapat dianalogikan dengan tetapan pegas (k).

Untuk jurnal yang saya buat bisa dilihat di sini.

Leave a Reply

Your email address will not be published. Required fields are marked *